How to Easily Avoid Filter Installation Problems

Correctly installing your Eaton industrial filter is the first step in ensuring the life expectancy of your unit – as well as optimal performance. Incorrect installation can affect the filter’s systems, cause it to operate poorly or physically damage the equipment.

The following list is a brief collection of easily-avoidable installation conditions that may cause problems during filter installation:

Low System Pressure

Since DCF and MCF™ filters rely on a purge operation to clear captured solids from the filter, having enough system pressure is important to successful purging. Eaton  recommends a minimum of 30 psi of system pressure to ensure an adequate purge. This pressure may need to be higher when the process liquid has high viscosity or the solids are sticky. The Stealth Purge option with external water flushing is an alternate solution that is independent of system pressure.

Purge Line Plumbing

A common error when installing mechanically-cleaned filters is incorrectly plumbing the purge line. The best situation for a purge line is to make it short in length, placing it on a downhill grade from the filter, and draining it into a collection tank. Since typical purge operations are less than 1 second in duration, there is very little flow in a purge line due to system pressure.

If the line runs uphill, solids will collect in the line and never flush away. In addition, a water flush line on the purge header may be needed if the purged materials are especially challenging.

Check Valves On Filter Outlet Plumbing

Running an outlet line into long, head-high runs (such as uphill) is an uncommon, yet potentially damaging situation. When the filter purges, a water-hammer situation may develop if flow reverses from the outlet side of the filter.

In the worst case scenario, this may cause the elements to collapse. However, this situation is easily prevented by placing a flow check valve on the outlet line from the filter.

Filter Placement Around Pumps

Since Eaton filters are pressure filters, they should always be placed on the outlet side of pumps. Placing the filter on the suction side of a pump may result in erratic operation or damage to the filter elements.

Backpressure on outlet lines Eaton filters will always work best when there is some backpressure on the filter’s outlet. The worst performance scenario for a filter is when the outlet runs directly to an atmospheric tank. For this reason, we recommend the installation of a flow orifice or control valve on the outlet header of the filter. By providing a slight amount of back pressure, the system will operate much more evenly and avoid pressure blinding.

Backwash Filter Media

When your filter’s backwash outlet line runs to an atmospheric tank, Eaton recommends using a flow orifice sized to prevent excessive differential pressure across the filter media during the backwash operation. This will prolong the life of the filter media.

External Backwash Liquid

The fluid source used in external backwash filter systems should be clean – and have particles smaller than the rated retention of the filter elements in the system. If these conditions are not met, the backwashing process can actually plug the elements instead of cleaning them.


Questions?  Just #AskFilterman on Twitter!

Why Spray Nozzle Protection is Important During Your Manufacturing Process

WHAT IS SPRAY NOZZLE PROTECTION? Spray Nozzles are specifically engineered for four critical functions: flow control, cleaning, coverage, and atomizing. It is important to filter solids from water, or any industrial liquid, before they reach your spray nozzles.

Unwanted and oversized particles can block the inside of an orifice, which in turn restricts water flow, impairs spray uniformity, and allows debris to pass through which in turn ends up in your process or on your product.

The proper filtration will help keep the nozzle clear of debris enabling them to provide uniform and consistent spray patterns.

For spray nozzle protection, careful media selection is essential. The primary factor to be considered is orifice size and shape of the nozzle opening. Other factors include solids content, type of contaminant, particle size, and shape, amount of contaminant to be removed, liquid temperature, and required flow rates.

For liquids other than water, knowing the liquid’s viscosity, corrosiveness, abrasiveness, and adhesive qualities are essential in specifying the nozzle protection filter.

EXAMPLE — FLUE GAS SCRUBBER SPRAY NOZZLE PROTECTION
To prevent fly ash and sulfur dioxide from venting into the atmosphere, flue gas scrubbers uniformly spray a sorbent into the dirty, hot flue gas. These sorbents, however, often contain oversized particles that can plug spray nozzle orifices. When this happens, the spray becomes uneven, and fly ash and sulfur dioxide can escape from the scrubber.

The key to spray nozzle protection is to filter the liquid before sending it to the spray nozzle. This eliminates the excess and oversize particles, which ultimately plugs the nozzle orifices. Once plugged, the spray becomes uneven, and the output quality becomes compromised. All at an additional and unnecessary expense to the bottom line.

The pro-active approach to this problem is to protect the spray nozzles, which is to filter the solution before it reaches this stage of the process. While there are many different filtration options, the most cost effective is to use self-cleaning filters. This is why incinerator systems manufacturers regularly contact Eaton to analyze their filtration methods in hopes of protecting their expensive spray nozzles while lowering their process costs.

A SELF-CLEANING SOLUTION
Eaton typically determines that the solution to this problem is twofold. To begin, many manufacturing facilities are throwing out more cartridges than necessary with disposable media. That is because disposable media are typically changed on a time cycle (e.g., once a shift, once a day, or once a week), regardless of whether the media needs replacement. To effectively filter when needed — and not when convenient — it is important to use automation when at all possible.

With the use of automation, the filters can be cleaned at precisely the right time, rather than when it is convenient. That is because the cleaning is controlled by the pressure differential between inlet and outlet headers as contaminants build up on the filter screen. When the pressure reaches a predetermined level, the screens are cleaned automatically — only as needed, and when needed.

The second problem was their use of processing liquids (sorbent) with unwanted and prior supposedly ‘filtered’ particles in it, which resulted in fouling and clogging of the spray nozzles. The consequence of this dynamic was uneven spray and fly ash/sulfur dioxide escaping from the scrubber.

Once identified, the incinerator systems manufacturer eliminated this problem by using Eaton self-cleaning filters. This meant less waste in the process. It also limited the unwanted particles in the process stream, which eliminated the spray nozzle clogging. Therefore, the process line did not have to be stopped to clean the nozzles.

RESULTS
The incinerator systems manufacturers are extremely pleased with the reliable operation of the filters, the elimination of spray nozzle plugging and fouling, as well as the fact that there are no spent cartridges to dispose.

–by Ask Filter Man

 

Follow @AskFilterMan on Twitter

How does Backwash Efficiency Affect Your Catalyst Bed Protection Filtration System?

Filtration systems are generally regenerated through a backwash cleaning cycle. The primary factors effecting backwash efficiency are • Available pressure differential • Backwash flow • Filter media characteristics  

Available Pressure Differential:  During backwashing, the backwash differential pressure (between the backwash source and drain) should ideally be three to five times greater than the differential pressure across the dirty media.  In a feedstock filter, the maximum dirty differential pressure should not exceed 15 PSID, meaning the backwash liquid should be delivered at 45 – 75 PSID to maximize the cleaning efficiency.

Backwash Flow:
A sufficient flow rate of backwash liquid will also be required to regenerate the filtering media. The required flow rate will be primarily dependent upon the type of media selected. Sufficient backwash flow along with sufficient backwash pressure will lead to hydro-shock cleaning effect and completely regenerate the media to its clean differential pressure.

Filter Media Characteristics:
The final component of filter regeneration is the media characteristics. By their very design, slotted wedge wire and woven wire mesh allow particles to be captured on the surface of the media, providing optimum particle release and media regeneration.  Sintered metal is multi-layered and can offer higher per-cake efficiencies, but can be difficult to regenerate.  This leads to shorter run times and increased downtime.

In summary, feedstock filtration is an important aspect in efficiently refinery operation.  Protecting catalyst beds from particulate contamination prevents bed plugging and increases catalyst life. Several factors affect filtration system efficiency and should be carefully considered when selecting a feedstock filtration system.

For more articles, tips and information on industrial filtration products and solutions visit our blog at eatonfiltration.wordpress.com or simply follow @AskFilterman on Twitter