Soap Maker Bubbling Over on Eaton Filters

Eaton’s DCF-800 Mechanically Cleaned Filter has helped this soap maker achieve a final product that consistently meets purity goals and has allowed for a more productive and cost-efficient manufacturing process.
Problem: Impurities in the soap due to an outdated filtering process
Solution: Eaton’s DCF-800 Mechanically Cleaned Filter
Results: The final product consistently meets purity goals and the manufacturing process is more productive and cost-efficient
Background
While maybe not quite as frightening as the famous Alfred Hitchcock shower scene, just imagine the shock of stepping into a hot shower, unwrapping your favorite bar of soap, and discovering that it’s already dirty. It can happen. That’s because soap contains glycerin, which brings with it important moisturizing properties. During the manufacturing process, glycerin is heated and added to the soap formulation before it goes to final production. However, the heating needs to be precise with little margin for error. When it is not heated properly, the soap can turn brown and even form brown specks that are small but still very much noticeable, hardly the 99 and 44/100% pure that a good soap needs to be.

Challenge
For one of the world’s largest suppliers of bar, detergent and body soaps, meeting that lofty goal is imperative to success. Supplying virtually every type of soap made, the company on any given day will see some 25 different brands of soap rolling down its production line. Relying on an outdated heating and filtering process, the company often had to reroute soap back into the assembly line to remove the brown haze and specks caused by the improperly heated glycerin to ensure that quality objectives were always achieved.  The rerouting was necessary, but was inefficient, expensive and time-consuming.  Additional labor was also required. While the final product was eventually meeting purity goals, the soap giant very much wanted to clean up the process.

Solution
In doing so, they turned to Eaton Filtration and installed a DOFF 800 filtration system for a 90-day trial run. The DOFF 800, a forerunner of the newer DCF­800 filters, is often used for trials.
Both perform a self-cleaning action by mechanically scraping collected debris from the filter screen with a disc that moves up and down the screen, parallel to the liquid flow. Collected debris is then automatically purged from the collection chamber at the bottom of the filter.  This self-cleaning action is performed without halting production and provides the highest quality filtering under continuous demand. Because the screen is cleaned continuously, a consistently high flow rate is maintained.  Uninterrupted filtering by the DCF also helps ensure consistent temperatures— a feature essential to meeting quality objectives.

Result
Before the 90-day test was even completed, the soap company was already washing its hands of the brown mess and has since ordered two new Eaton DCF-800 filters.  “Removal of the glycerin impurities was very successful,” reports Bruce Law, regional sales manager for Eaton’s filtration business. “The test unit delivered everything that we said it would.”  As a result, Law believes the costly rerouting of soap will soon be virtually eliminated.  “It’s still too early to gather a measurable return on investment,” adds Law, “but based on the results of the trial, the number of bars of soap that the company produces, and the cost to rework an out of spec product, it strikes me that the payback is going to be pretty quick.”

DCF-800 – One actuator delivers simple, reliable operation with water-like liquids. Ideal where a low initial investment is a key Our unique circular cleaning disc design (MCF design shown) ensures intimate contact with the screen to thoroughly and uniformly clean the media

 
Advertisements

Eaton Filters are Can Do Solutions – Customer Success Story

Metal Food Packaging : Eaton Filters are Can Do Solutions

“Eaton has been right there with us and I have been very impressed with that.”  Quality Control Manager


Problem: Manufacturing facility was relying on an antiquated paper filtering process, which was expensive, hard-tomaintain, and time consuming.Eaton’s MCF 824-Series Mechanically Cleaned Filter.
Results: 
An easy to use filter that practically eliminated paper costs of approximately $60,000 per year, realized maintenance and labor savings, increased operator safety, and reduced landfill waste.


Background

The largest supplier of metal food containers in North America prides itself on quality,customer support, implementing leading edge technologies,sustainable business practices,and lowering costs whenever possible. Partnering with suppliers that can best help meet those goals is another primary objective. With annual sales in excess of a billion dollars, the company’s containers are used primarily by processors and packagers for foods such as soup, vegetables,fruit, meat, tomato-based products, coffee, seafood, adult nutritional drinks, pet food, and other miscellaneous food products. A wealth of well-known manufacturer brands, large and small, rely on the company’s cans for the consistent delivery of  high-quality, high-grade consumable goods.

Challenge
The cutting and shaping of metals is an important part ofthe manufacturing process. According to the quality control manager at one of the company’s 28 manufacturing facilities whose process requires the use of lubricants to keep the metal cool so that it can beshaped properly and precisely. The lubricant, or coolant, also picks up metal shavings, oils,and dirt that occur naturally. A filtering process is required to clean the coolant and return it to the manufacturing line.  For years, the facility was relying on an antiquated paper filtering process, which was expensive,hard-to-maintain, and time-consuming.Paper costs alone were running about $5000 per month, says the quality control manager. “On top of that, the changing of the paper filters would take the operator about a half-hour to 45 minutes of his time to cut offthe paper with a razor knife,carry it down stairs and put it on a pallet, dispose of it, and mopup the mess,” he adds.

Solution
However, that’s all changed now thanks to the installation of new Eaton MCF 824-Series mechanically cleaned filtration systems.The system features a cylindrical stainless steel housing that contains a cleanable, permanent filter screen. Unfiltered liquids flow from the top down and from the inside of the media toward the outside. Impurities are deposited on the interior surface of the filter screen, and the clean fluid exits through an outlet. When the media requires cleaning, a spring loaded cleaning disc travels top to bottom inside the filter media,directing collected contaminants downward, where they are concentrated in the purging chamber for easy expulsion. The whole cleaning process occurs while the filter remains in service, eliminating or reducing the use of disposable filter bags,decreasing operator handling,lowering inventory costs, and decreasing waste disposal. The innovative, magnetically coupled driving technology that moves the cleaning disc – without the need for shaft or drive external seals – adds additional appeal tothe unique design.

Result
The quality control manager reports significant financial gains by practically eliminating paper costs. The old systems are still used, but only as a backup when the Eaton MCF 824 units are undergoing scheduled maintenance.“We have been very satisfied,”adds the manager. ”We’ve been running the systems for four years and Eaton has been very helpful with us in making the original change over and later updating the equipment with new parts over the years.“They even came up with abetter way of cleaning the MCF824-Series filters. So we were able to extend the life of the filters even further. We originally had to change the filters every four or five days. Now we can stretch it out to once every eight days. “Eaton has been right there with us and I have been very impressed with that.” Not to be overlooked, he notes,are the additional gains being realized in maintenance savings,labor savings, and disposal savings – which deems that the responsible management of the environment plays a significant role in achieving success.“Now everything is pretty much automatic,” notes the manager. “It’s a much better system in a variety of ways.”He is confident other company manufacturing facilities around the country could also benefit with the Eaton setup, which has effectively turned the filtering process from a can of worms into a can of corn.

 

Read more customer success stories from Eaton’s Filtration Business.

How to Protect your Fixed-bed Reactors from Contamination

How liquid filtration systems protect fixed-bed reactors from contamination, leading to extended catalyst life and longer run lengths.

In the petroleum refining industry, catalysts represent a significant cost, so refineries are chiefly concerned with extending a catalyst’s life as long as possible. The simplest way to do this is to protect the fixed-bed reactor from becoming contaminated with dirt, carbon deposits, and other organic materials. These items can cause the bed to plug, resulting in decreased reaction efficiency, and potentially require the unit to be brought down early. Catalysts must then be regenerated or replaced.

In general, catalyst bed protection requires the filtration of all particles larger than 25 microns from the feedstock stream. Particles that are smaller than 25 microns will pass through the reactor bed without plugging the catalyst.

Three major factors must be taken into consideration when selecting a proper filtration system:

  • Flux rate
  • Filtration media
  • Clean ability

Flux Rate:
The size of the filtration system is dependent on the flux rate, which is defined s the flow rate per unit of filtration area.
For example, 100 gpm of VGO flowing through a filtration system with 50 ft2 of filtering area represents a flux rate of 2 gpm/ft2. It can be seen from this flux rate formula that an increase in filtration area will lead to a lower flux rate, which will in turn result in a lower velocity of the fluid as it passes through the media.

Lower flow velocity across the filtering media allows the formation of a porous cake on the surface of the media. This leads to longer run times between backwash cycles and increases efficiency in particle removal.

This cake formation also has the added benefit of preventing particles from becoming embedded in the media, allowing for easy removal of particulate during the backwash cleaning cycle.

Filtration Media and Clean ability:
When selecting a feedstock filtration system, another important consideration is media type and its clean ability.

Possible media choices include slotted wedge wire, woven wire mesh, and multi-layered sintered metal. Each one carries its own advantages and disadvantages, but perhaps the most critical consideration when choosing a feedstock filtration system is the ability to completely regenerate the filtration media to its original clean state.

If the media is not sufficiently cleaned, the result is shorter run times and will eventually require the filter to be bypassed for manual cleaning or media replacement.

In summary, feedstock filtration is an important aspect in efficiently refinery operation. Protecting catalyst beds from particulate contamination prevents bed plugging and increases catalyst life.  Several factors affect filtration system efficiency and should be carefully considered when selecting a feedstock filtration system.

 

The Filtration of Process Water and Its Importance in the Petroleum Industry


Disposable Filter Media: When final product clarification is a key process objective, a general standard of particle removal is retention in the 0.2 – 200 µ range. Many disposable filter media meet this criterion. Disposable filter media, typically bags or cartridges come in a wide range of µ and fabrics. Woven and nonwoven polypropylene, cellulose, polyester, nylon, and other materials are all available.

Two types of efficiency ratings are typically used for disposable filtration media: nominal and absolute. Nominal ratings can vary from 50 – 90% removal efficiency, depending on the product and the manufacturer. Absolute ratings imply 100% removal of particles at a set rating; this actually means 98.7 – 99.99%, depending on the product and the vendor.

Bag fabrication has advanced over the past few years, improving the filtration capacity of bags and making them more efficient. Multilayer bags, some as much as an inch thick, are now on the market. The multiple layers increase the solids holding capacity of the bags and provide a larger surface area for filtration. These higher efficiency bags normally last longer, remove a higher percentage of contaminants (up to 99.9%) and can be rated as low as 1.5 µ.

Even with new designs in bag construction, cartridge filters trap particulate that a simple bag cannot, such as soft particles, which can be extruded through bags. The ‘depth’ design of cartridges (layer of rigid construction) means they have more surface area upon which to trap the dirt and enable significantly more dirt holding capacity when compares to a similar size bag. This makes cartridge the filter choice for absolute filtration.

While disposable media such as bags and cartridges usually have a relatively low initial cost, operating costs can be high if charge out is frequent. Media replacement and waste disposal costs can quickly outweigh any ‘savings’ from the lower acquisition cost. Conversely, for applications with low processing volumes or where media replacement is infrequent, bag or cartridge filtration may be the best choice.

Cleanable Filter Media: Several different types of cleanable filter media are available as alternatives to disposable media or as a prefilter in staged filtration systems. They include wire mesh, wedge wire, defined pore, perforated, and sintered metal filters. Cleanable media can often be used in the same applications as disposable bags or cartridges, sometimes with significant labor and cost savings. There are many applications where pressure or flow requirements make cleanable filter media a better choice. When comparing purchase price to operational expenditures, a typical payback can range from six months to one year.

Cleaning of this media type may be done manually, hydraulically or mechanically. Manual cleaning often requires the use of expensive cleaning compounds, and the filter media can be damaged during cleaning. Additionally, work force is obviously required for manual cleaning, and worker safety/exposure issues are raised. Hydraulic cleaning involves using either the process stream or another compatible source of liquid to backwash the filter media. This may be cost prohibitive if the liquid being filtered is very expensive, hazardous, and/or no compatible with an outside source of liquid to the backwashing. Disposal of large volumes of contaminated backwash liquid could also be prohibitive.

There are three main classes of cleanable filters: vibrating screens, backwashing filters, and mechanically cleaned filters. Of these three, only vibrating screens require manual cleaning, but they have limited use in the petroleum process, especially for water treatment.  Mechanically cleaned filters are ideal for highly viscous liquids. Again, this does not apply to most water treatment applications.

Backwashing filters work well in high volume applications, typically ranging from 100 gpm and upwards. A minimum pressure of 45 psi and a small volume of liquid are required for backwashing. For these reasons, backwashing filters are often found throughout the petroleum industry.

Ultimately, whatever the process water application, careful consideration and selection of filtration equipment can significantly improve overall system performance. Although most attention for filtration in the petroleum industry traditionally focuses on refining crude, water is a key process component and can help drive optimization. It will reduce maintenance costs, repair costs, and labor requirements. It will also extend the life of expensive and valuable equipment, improve a plant’s competitive position, and help to drive profits.

Why Cleanable Media for Industrial Filter Processes is More Environmentally Friendly

Due to the new environmental regulations — and the costs associated with waste disposal — the manner in which industries filter to either recycle or eliminate filtration waste is constantly changing.

Selecting filtration equipment is the combined result of many considerations.

In addition to removing undesirable material from a liquid stream, the filtration method selected must also satisfy other requirement.

Installed costs must be weighed against operating costs. Waste disposal costs must be considered. Is continuous flow a requirement of the application, or can the filtration equipment be operated intermittently? Is worker exposure to the process liquid during filter cleaning or replacement a problem?

These and other factors must be weighed when choosing the right filtration method for a particular application.

Today, more than ever, self-cleaning filters (cleanable media) is the better methodology — and many times the right thing to do — for many reasons.

With cleanable systems, you enhance employee safety by minimizing worker and workplace exposure to process liquids.

You minimize or eliminate the unlimited cost and inconvenience of media replacement.

You minimize or eliminate the never-ending and ever-rising cost and hassle of media disposal.

You drastically reduce the labor costs to source, purchase, inventory, transport, change, and dispose of replacement media.

You increase the quality and consistence of filter performance and productivity.

To help reduce the confusion when you are evaluating different filtration methods/systems, I have compiled a list of questions you may want to consider:


Factors to Consider: When selecting a filter for a particular application, the following criteria should be considered.

1. How large is the process volume? What is the flow rate?

2. Is it a continuous or batch process?

3. What are the material characteristics of the solids being removed? How large are the particles? Is the material hazardous? Can the material being removed be recycled back into the process stream at another point?

4. What are the waste disposal costs? How often do bags or cartridges need to be replaced? Can the waste volume be reduced or eliminated by switching to a different filtration method?

5. What are the labor and downtime costs for filter or cartridge replacement? Can downtime be reduced or eliminated by switching to a different filtration method?

— Eaton Filtration

For questions about industrial filtration, please visit the Ask Filter Man page on Twitter at www.twitter.com/askfilterman

Integration Update 2 – Eaton’s Internormen Technology

In our last issue we introduced you to Eaton’s integration website, “brands-update” as well as our Facebook pages to keep you informed about the Internormen integration progress.

We are pleased to announce the latest updates to the website:

  • High resolution, dual branded brochures are available for download only. Visit the literature library.
  • Complete “how-to buy” information. Visit the how-to buy page.
  • Internormen Product Line CD-ROM with Interactive Product Specifier is available upon request.

To order the CD-ROM, please fill out the form on the contact us page.

As always, if you have any questions or comments please feel free to call or email us anytime.

Eaton’s Newest Customer Success Story : Paint Manufacturer

The Eaton DCF-1600 mechanically cleaned filter was installed to remedy the problems associated with large particles and foreign fibers. The quality of finished paints improved while the company reduced process costs, and gained a safer and cleaner work environment.

Read the full success story today. Click to Read